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Summary. For  any point on a gradient extremal path, the gradient is an 
eigenvector of the hessian. Two new methods for foUowing the gradient extremal 
path are presented. The first greatly reduces the number of second derivative 
calculations needed by using a modified updating scheme for the hessian. The 
second method follows the gradient extremal using only the gradient, avoiding 
the hessian evaluation entirely. The latter algorithm makes it possible to use 
gradient extremals to explore energy surfaces at higher levels of theory for which 
analytical hessians are not available. 
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I Introduction 

The investigation of  energetics and reactivity by quantum chemical methods 
involves the exploration of potential energy surfaces. The features of interest of 
these surfaces include minima, saddle points and the paths that connect them. 
The minima, representing reactants, products and intermediates, are relatively 
easy to find by gradient based optimization methods (for a review of geometry 
optimization methods, see [1]). A transition state is more difficult to find [1], 
since it is first order saddle point (i.e., a maximum in one direction and a 
minimum in all other directions). Reaction paths can be found by following the 
steepest descent path from the transition states to the reactants and products [2]. 
If  the steepest descent or minimum energy path (MEP) is computed in mass 
weighted cartesian coordinates, it is termed the intrinsic reaction coordinate 
(IRC) [2]. A number of  algorithms are available for following reaction paths 
[3-7]. Generally, these methods are unsuitable for following the path uphill from 
the reactants to the transition state. In part, this is because there are no local 
criteria for determining whether or not a point is on the minimum energy path 
connecting the transition state and the minimum. An alternative to the minimum 
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energy path is the gradient extremal, path [8-13], i.e., the path along which the 
gradient is an eigenvector of the hessian: 

J?(s) suchthat H(s)~,(s)=2(s)~(s) (1) 

where s is the arc length along the path, ~(s) is the gradient at 2(s) and H(s) is 
the hessian at 2(s). The gradient extremal path is locally defined- from any 
point on the energy surface one can step to the gradient extremal path. 
Algorithms have been devised for following gradient extremal paths (see [11] and 
references cited), and these methods work equally well in the uphill and the 
downhill directions. However, gradient extremal paths have some drawbacks: (a) 
they have no dynamic or mechanistic significance, (b) they do not always follow 
the most direct route from a minimum to a transition state (see [10] for an 
example) and (c) existing algorithms require second derivatives at each step. 
Second derivative calculations are significantly more expensive than gradient 
computations. Even more problematic is the fact that analytic second derivatives 
are not available for most of post-SCF levels of theory that are currently being 
used in accurate studies of potential energy surfaces. The present paper outlines 
two algorithms for following gradient extremals: one method that requires fewer 
second derivative calculations and a second method that requires no second 
derivative evaluations. 

2 Theory 

It has been shown that the gradient is not tangent to the gradient extremal path 
[10]. This can be seen readily by writing 2(s) as a Taylor expansion and by 
differentiating Eq. (1) with respect to the arc length, s. 

~2 d22 
2(s) = 2(0) + sg°(s) + ls2~l(s) + "  "; v°(s) = Os; 9X(s) = Os 2 (2) 

OH 02 . . . .  0~ 02 O2 0~ 02 

02 ~s g *"õ-}x Os - Os ~" +'~ ~ Os (3) 
O2. 

(eq°)g + H2q° = ~s g + 2H~° (4) 

where OH/O2 = F is the third derivative, 0~/t92 = H is the hessian and O~/Os = fio 
is the tangent to the gradient extremal path. The tangent can be found by solving 
the set of linear equations given in Eq. (4). If the third derivative term is 
non-zero, the tangent cannot be an eigenvector of the hessian. Equation (1) 
requires the gradient to be an eigenvector of the hessian; hence, the tangent 
differs from the gradient by a term depending on the third derivatives. Thus, any 
attempt to follow the gradient extremal path by simply stepping along the 
gradient is incorrect even in the first order term in Eq. (2). 

The gradient-extremal following algorithm of by Jorgensen, Jensen, and 
Helgaker [11] does yield the correct tangent (in the modification given below), 
since an optimization step is added to return to the gradient extremal path after 
stepping along the gradient: 

2(s') = ~(0) + @(0) 
(S) 

2(s) = 2(s') - ( / -  ~(s) • ~(s)')H(s)- 'g(s) 
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where ~(0) satisfies H(0)~(0) = 2(0)g(0) and ~(s) is the appropriate eigenvector of 
H(s). 

The use of Eq. (5) for following gradient extremal paths can be quite costly, 
since the hessian is required at each step. For SCF methods, the analytical 
computation of the hessian is usually several times more expensive than the 
gradient calculation. For many post-SCF methods, the hessian must be com- 
puted by numerically differentiating the gradient. This can become prohibitively 
expensive as the number of atoms/degrees of ffeedom increases. One alternative 
is to calculate the hessian at only a few points along the gradient extremal path 
and to use a hessian updating formula for the intermediate points. The appropri- 
ate formulas can be found by expanding the gradient and hessian in a Taylor 
series: 

1 0 g1 = gO + E HO A+ + ~ Z r ,» Ax+ ax, ~ +. . .  
j jk 

(6) 

H ~ -  o - Hij + E F°k AXk + ' ' "  (7) 
k 

The DFP updating formula (see [14] or any other text on unconstrained 
optimization methods) for the hessian is: 

t t l = H ° + A H ;  AH -A6°A~,- HA2A2tH', A g = ~ l - ~  ° (8) 
Ag t A2 A.~tH A2 

This and related updating formulas, such as BFGS, OC, etc. [14] all have the 
property: 

Ag, = E HJJ Ax/ = Z H° Axj + ½ E F% Ax: Axk (9) 
j j jk 

OF 

Ag = ~I  1 A x  =- H ° A 2  + A H  A 2  

However, the correct expansion of H 1 needed for Eq. (5) has the following 
component along A2: 

0 Z Hb Ax: = E H° A+ + Z r,» ~+ Axk (10) 
j j jk 

By comparison with Eq. (9), we can see that the third derivative term in Eq. 
(10) can be approximated by 2AHA2. This leads to the following update 
formula for the hessian at £ 1 given the exact hessian H ° at 2°: 

H 1 = H  ° + 2 A H  (11) 

The extra factor of 2 arises from the fact that Eq. (8) is required to fit the 
change in the gradient with an average hessian, whereas Eq. (11) estimates the 
change in the hessian. This updating formula can be used with the Jorgensen, 
Jensen, and Helgaker algorithm [ 11] to following gradient extremal paths with a 
greatly reduced number of hessian calculations. Because Eq. (11) updates the 
hessian using only the information from stepping in the direction of A2, it is 
probably advisable to re-compute the hessian every 5 or 10 steps. 

An alternate algorithm for following gradient extremal paths can be devised 
that relies only on the gradient and avoids the direct calculation of the hessian. 
Consider 2 ~ on the gradient extremal path and 2" a small displacement v from 
21 along the gradient g 1. 
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2" = 21 + ~1/[~11 (12) 

~ ,  = ~1 + Hi(2 , _ 21) ..~ O(,.~ 2) = ~1 _1_ + O( 2) 

= + + = ( l  + + z) (13)  

where the condition for being on the gradient extremal, H ' ~ ' =  2~ 1, has been 
used to simplify the last equation. Thus, if ~1 is on the gradient extremal, ~* is 
parallel to ~1. This can be rewritten as: 

~* -- (~*t~l)~l/[~'12 = 0 (14) 

to first order in ~. Note that Eq. (14) is a local condition for the gradient 
extremal path that is independent of the hessian and requires only two gradient 
evaluations, The point £ ~ can be found by a constrained optimization such that 
Eq. (14) is satisfied and the stepsize from a previous point on the path is 
constant, i.e.: 

12'-2°1 = er (15) 

This is analogous to the Mfiller-Brown [4] and Gonzalez-Schlegel [7] 
reaction path following algorithms with the residual from Eq. (14) used in place 
of the gradient in the constrained optimization. Since Eq. (14) is a local criterion 
(z 4 o-), 2 ~ will be on the gradient extremal path, regardless of the stepsize a; 
hence, the question of the formal order of the algorithm is not relevant. Because 
two gradients must be calculated to evaluate Eq. (14), following gradient 
extremal paths will be roughly twice as expensive as following minimum energy 
paths. The payoff, of course, is that gradient extremal paths can be followed 
uphill to the transition state, whereas minimum energy paths, in general, cannot. 
One drawback of the gradient method for following extremal paths is that 
bifurcations cannot be detected readily. 

Minimum energy paths have the desirable feature of being the most direct 
route between the transition state and reactants and products (in the sense of 
greatest energy lowering for distance traveled). Gradient extremal paths tend to 
be somewhat less direct (see [10] for an example). Some insight into this can be 
gained by comparing the two paths. For a minimum energy path, the tangent 
and curvature for the Taylor expansion of the path given in Eq. (2) are: 

= -g/l l; = ( H r  o -  ( r ° 'Hr° )r° ) / Ig  I (16) 

The initial curvature for a minimum energy path starting from any point on 
the gradient extremal path is zero. Since g on  the gradient extremal path is an 
eigenvector of the hessian, then so is rio; substitution of the expression for r ° into 
r 1 simplifies to zero. This suggests, but does not prove, that the largest deviation 
between a minimum energy path and the corresponding gradient extremal path 
will occur near regions of large curvature in the minimum energy path. 

3 Application 

A simple application of the gradient extremal path following algorithm given by 
Eqs. (14) and (15) is illustrated in Fig. 1. This is a portion of a model surface 
proposed by Ruedenberg et al. [10]: 

E(x,  y) = ½ ( x Y  2 - -  y x  z + X 2 + 2y -- 3) (17) 
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Fig. 1. Gradient extremal and minimum 
energy paths on the surface given by Eq. 
(17) ( - 1  ~<x ~<3, - 2  ~<y ~<2). D a s h e d  

l i n e  - minimum energy path, s o l i d  l i n e  - 

gradient extremal path, d o t s  - points on the 
gradient extremal path calculated using 
Eqs. (14) and (15) 

A complete analysis of the various gradient extremal and minimum energy 
paths can be found in [10]. The dashed line, the minimum energy path, was 
calculated by steepest descent from the transition state using Euler's method 
(stepsize =0.01). The gradient extremal path was followed uphill using the 
algorithm of Jgrgensen, Jensen, and Helgaker [11] (Eq. (5), stepsize = 0.02). The 
dots represent the points found by applying Eqs. (14) and (15) to follow the 
gradient extremal path uphill (stepsize a = 0.5, z = 0.005). All calculations for 
this model surface were carried out with Mathematica [15]. The method pro- 
posed in this paper follows the gradient extremal path quite weil for this simple 
example. The constrained minimization of Eq. (14) is rather easy in two 
dimensions. For higher dimensions, techniques similar to the reaction path 
following methods [7] will be needed. 
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